Abstract
AbstractGraphic AbstractObjectiveA cardinal feature of Marfan syndrome is thoracic aortic aneurysm (TAA). The contribution of ligand-dependent stimulation of angiotensin II receptor type 1a (AT1aR) to TAA progression remains controversial because the beneficial effects of angiotensin receptor blockers have been ascribed to off-target effects. This study used genetic and pharmacologic modes of attenuating angiotensin receptor and ligand, respectively, to determine their roles on TAA in mice with fibrillin-1 haploinsufficiency (Fbn1C1041G/+).Approach and ResultsTAA in Fbn1C1041G/+ mice were determined in both sexes and found to be strikingly sexual dimorphic. Males displayed progressive dilation over 12 months while ascending aortic dilation in Fbn1C1041G/+ females did not differ significantly from wild type mice. To determine the role of AT1aR, Fbn1C1041G/+ mice that were either +/+ or −/− for AT1aR were generated. AT1aR deletion reduced progressive expansion of ascending aorta and aortic root diameter from 1 to 12 months of age in males. Medial thickening and elastin fragmentation were attenuated. An antisense oligonucleotide against angiotensinogen (AGT-ASO) was administered to male Fbn1C1041G/+ mice to determine the effects of angiotensin II depletion. AGT-ASO administration, at doses that markedly reduced plasma AGT concentrations, attenuated progressive dilation of the ascending aorta and aortic root. AGT-ASO also reduced medial thickening and elastin fragmentation.ConclusionsGenetic approaches to delete AT1aR and deplete AngII production exerted similar effects in attenuating pathology in the proximal thoracic aorta of male Fbn1C1041G/+ mice. These data are consistent with ligand (AngII) dependent stimulation of AT1aR being responsible for aortic disease progression.HighlightsProfound sexual dimorphism of aortic disease occurs in Fbn1C1041G/+ mice, with female mice being more resistant and male mice being more susceptible.Inhibition of the AngII-AT1aR axis attenuates aortic pathology in male Fbn1C1041G/+ mice.Antisense oligonucleotides targeting angiotensinogen deplete plasma angiotensinogen and attenuate thoracic aortic aneurysms.
Publisher
Cold Spring Harbor Laboratory