Colonization of the murine oropharynx by Streptococcus pyogenes is governed by the Rgg2/3 quorum sensing system

Author:

Gogos ArtemisORCID,Federle Michael J.ORCID

Abstract

AbstractStreptococcus pyogenes is a human-restricted pathogen most often found in the human nasopharynx. Multiple bacterial factors are known to contribute to persistent colonization of this niche, and many are important in mucosal immunity and vaccine development. In this work, mice were infected intranasally with transcriptional regulator mutants of the Rgg2/3 quorum sensing (QS) system—a peptide-based signaling system conserved in sequenced isolates of S. pyogenes. Deletion of the QS system’s transcriptional activator (Δrgg2) dramatically diminished the percentage of colonized mice while deletion of the transcriptional repressor (Δrgg3) increased the percentage of colonized mice compared to wild type. Stimulation of the QS system using synthetic pheromones prior to inoculation did not significantly increase the percentage of animals colonized, indicating that QS-dependent colonization is responsive to the intrinsic conditions within the host upper respiratory tract. Bacterial RNA extracted directly from oropharyngeal swabs and evaluated by quantitative RT-PCR subsequently confirmed QS upregulation within one hour of inoculation. In the nasal-associated lymphoid tissue (NALT), a muted inflammatory response to the Δrgg2 bacteria suggests that their rapid elimination failed to elicit the previously characterized response to intranasal inoculation of GAS. This work identifies a new transcriptional regulatory system governing the ability of S. pyogenes to colonize the nasopharynx and provides knowledge that could help lead to decolonization therapeutics.Author SummaryStreptococcus pyogenes is responsible for a wide spectrum of diseases ranging from common pharyngitis to infrequent invasive infections like necrotizing fasciitis. The ability of this microorganism to persist in the human oropharynx predisposes colonized individuals to a variety of superficial and invasive diseases which lead to significant morbidities and mortality. Identification of the regulatory systems that augment the bacteria’s ability to colonize the oropharynx provides potential targets against which molecular therapeutics can be designed. Here we show that the Rgg2/3 quorum sensing system, an interbacterial communication system, governs the ability of S. pyogenes to colonize the murine oropharynx. Disruption of the system’s transcriptional activator reduced colonization dramatically, eliminated the transcription of two sets of genes known to be activated by the Rgg2/3 system, and tempered the innate immune response seen when S. pyogenes is intranasally infected into the mouse.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3