A new experimental system to study meiotic recurrent non-allelic homologous recombination in budding yeast

Author:

Sedam Hailey N. C.ORCID,Argueso Juan LucasORCID

Abstract

ABSTRACTIn humans,de novorecurrent copy number variations (CNVs) often arise during meiosis from non-allelic homologous recombination (NAHR) between low copy repeat elements (LCRs). These chromosomal rearrangements are responsible for a wide variety of genomic disorders involving duplication or deletion of dose-sensitive genes. The precise factors that steer meiotic cells toward this detrimental recombination pathway are not fully understood. To create a model for the investigation of LCR-mediated CNV mechanisms, we developed a diploid experimental system inSaccharomyces cerevisiae. We modified the right arm of chromosome V through the introduction of engineered LCRs: duplicated 5 to 35 kb segments of yeast DNA flanking single copy interstitial spacers, analogously to the meiotic NAHR substrates that exist in humans. Phenotypic markers, including a copy number reporter, were inserted within the interstitial spacer. Their segregation in the haploid meiotic progeny was used to phenotypically identity and classify recurrent CNV events. This system allowed us to measure the effects of LCR size on the frequency of meioticde novorecurrent CNV formation, and to determine the relative proportions of each of the three main NAHR classes: interhomolog, intersister, and intrachromatid. The frequency of CNV increased as the LCRs became larger, and interhomolog NAHR was overrepresented relative to the two other classes. We showed that this experimental system directly mimics the features ofde novorecurrent CNVs reported in human disease, thus it represents a promising tool for the discovery and characterization of conserved cellular factors and environmental exposures that can modulate meiotic NAHR.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3