Development of a Finite Element Model to Predict the Cellular Micromechanical Environment in Tissue Engineering Scaffolds

Author:

Page Mitchell I,Linde Peter E,Puttlitz Christian MORCID

Abstract

AbstractCell fate in tissue engineering (TE) strategies is paramount to regenerate healthy, functional organs. The mechanical loads experienced by cells play an important role in cell fate. However, in TE scaffolds with a cell-laden hydrogel matrix, it is prohibitively complex to prescribe and measure this cellular micromechanical environment (CME). Accordingly, this study aimed to develop a finite element (FE) model of a TE scaffold unit cell that can be subsequently implemented to predict the CME and cell fates under prescribed loading. The compressible hyperelastic mechanics of a fibrin hydrogel were characterized by fitting unconfined compression and confined compression experimental data. This material model was implemented in a unit cell FE model of a TE scaffold. The FE mesh and boundary conditions were evaluated with respect to the mechanical response of a region of interest (ROI). A compressible second-order reduced polynomial hyperelastic model gave the best fit to the experimental data (C10 = 1.72×10-4, C20 = 3.83×10-4, D1 = 3.41, D2 = 8.06×10-2). A mesh with seed sizes of 40 μm and 60 μm in the ROI and non-ROI regions, respectively, yielded a converged model in 54 minutes. The in-plane boundary conditions demonstrated minimal influence on ROI mechanics for a 2-by-2 unit cell. However, the out-of-plane boundary conditions did exhibit an appreciable influence on ROI mechanics for a two bilayer unit cell. Overall, the developed unit cell model facilitates the modeling of the mechanical state of a cell-laden hydrogel within a TE scaffold under prescribed loading. This model will be utilized to characterize the CME in future studies, and 3D micromechanical criteria may be applied to predict cell fate in these scaffolds.

Publisher

Cold Spring Harbor Laboratory

Reference12 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3