An MRI-based, data-driven model of cortical laminar connectivity

Author:

Shamir IttaiORCID,Assaf YanivORCID

Abstract

AbstractOver the past two centuries, great scientific efforts have been spent on deciphering the structure and function of the cerebral cortex using a wide variety of methods. Since the advent of MRI neuroimaging, significant progress has been made in imaging of global white matter connectivity (connectomics), followed by promising new studies regarding imaging of grey matter laminar compartments. Despite progress in both fields, there still lacks mesoscale information regarding cortical laminar connectivity that could potentially bridge the gap between the current resolution of connectomics and the relatively higher resolution of cortical laminar imaging. Here, we systematically review a sample of prominent published articles regarding cortical laminar connectivity, in order to offer a simplified data-driven model that integrates white and grey matter MRI datasets into a novel way of exploring whole-brain tissue-level connectivity. Although it has been widely accepted that the cortex is exceptionally organized and interconnected, studies on the subject display a variety of approaches towards its structural building blocks. Our model addresses three principal cortical building blocks: cortical layer definitions (laminar grouping), vertical connections (intraregional, within the cortical microcircuit and subcortex) and horizontal connections (interregional, including connections within and between the hemispheres). While cortical partitioning into layers is more widely accepted as common knowledge, certain aspects of others such as cortical columns or microcircuits are still being debated. This study offers a broad and simplified view of histological and microscopical knowledge in laminar research that is applicable to the limitations of MRI methodologies, primarily regarding specificity and resolution.

Publisher

Cold Spring Harbor Laboratory

Reference96 articles.

1. Sporns O. (2012). Discovering the Human Connectome, MIT press, ISBN: 978-0-262-01790-9.

2. Title Pages / Table of Contents / Preface

3. Leemans A. , Jeurissen B. , Sijbers J. , Jones D. K. (2009). ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data, In: 17th Annual Meeting of International Society of Magnetic Resonance in Medicine, p. 3537, Hawaii, USA.

4. The Human Connectome: A Structural Description of the Human Brain

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3