HNRNPM controls circRNA biogenesis and splicing fidelity to sustain prostate cancer cell fitness

Author:

Ho Jessica SY,Low Diana,Schwarz Megan,Incarnato Danny,Gay Florence,Tabaglio Tommaso,Zhang Jingxian,Wollman Heike,Chen Leilei,An OmerORCID,Chan Tim Hon Man,Hickman Alexander Hall,Zheng Simin,Roudko Vladimir,Chen Sujun,Ahmed Musaddeque,He Housheng Hansen,Greenbaum Benjamin D.,Marazzi Ivan,Serresi Michela,Gargiulo Gaetano,Oliviero SalvatoreORCID,Wee Dave Keng Boon,Guccione ErnestoORCID

Abstract

ABSTRACTCancer cells are differentially dependent on the splicing machinery compared to normal untransformed cells. The splicing machinery thus represents a potential therapeutic target in cancer. To identify splicing factors important for prostate cancer cell (PCa) cell growth, we performed a parallel pooled shRNA screen on in vitro passaged cells and in vivo xenografted PCa tumor lines. Our screen revealed HNRNPM as a potential regulator of PCa cell growth. RNA- and eCLIP-sequencing data suggest that HNRNPM is bound to transcripts of key homeostatic genes and that loss of HNRNPM binding in a subset of these genes results in aberrant exon inclusion and exon back-splicing events in target transcripts. In both linear and circular mis-spliced transcripts, HNRNPM appears to preferentially bind to GU-rich elements in long flanking proximal introns. Mimicry of HNRNPM dependent linear splicing events using splice-switching antisense oligonucleotides (SSOs) was sufficient to inhibit cell growth in HNRNPM expressing cells. This suggests that prostate cancer cell dependence on HNRNPM is likely a result of mis-splicing of key homeostatic coding and non-coding genes. Taken together, our data reveal a role for HNRNPM in supporting prostate cancer cell fitness, and also as a potential therapeutic target in PCa.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3