Abstract
AbstractOur current understanding of the pathophysiology of human pulmonary TB is limited by the paucity of human TB lung tissue for study and reliance on 2D analytical methods. Here, to overcome the limitations of conventional 2D histopathology, we used high-resolution 3D X-ray imaging (µCT/nCT) to characterize necrotic lesions within human tuberculous lung tissues in relation to the airways and vasculature. We observed marked heterogeneity in the 3D structure and volume of lesions. Also, 3D imaging of large human TB lung sections provides unanticipated new insight into the spatial organization of TB lesions in relation to airways and the vascular system. Contrary to the current dogma depicting granulomas as simple spherical structures, we show that TB lesions exhibit complex, cylindrical, branched-type morphologies, which are connected to, and shaped by, the small airways. Our results highlight the likelihood that a single structurally complex lesion could be wrongly viewed as multiple independent lesions when evaluated in 2D. These findings have strong implications for understanding the pathophysiology and evolution of TB disease and suggest that aerosolized drug delivery strategies for TB should be reconsidered.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献