On Identifying and Mitigating Bias in the Estimation of the COVID-19 Case Fatality Rate

Author:

Angelopoulos Anastasios NikolasORCID,Pathak Reese,Varma RohitORCID,Jordan Michael I.ORCID

Abstract

AbstractThe relative case fatality rates (CFRs) between groups and countries are key measures of relative risk that guide policy decisions regarding scarce medical resource allocation during the ongoing COVID-19 pandemic. In the middle of an active outbreak when surveillance data is the primary source of information, estimating these quantities involves compensating for competing biases in time series of deaths, cases, and recoveries. These include time- and severity-dependent reporting of cases as well as time lags in observed patient outcomes. In the context of COVID-19 CFR estimation, we survey such biases and their potential significance. Further, we analyze theoretically the effect of certain biases, like preferential reporting of fatal cases, on naive estimators of CFR. We provide a partially corrected estimator of these naive estimates that accounts for time lag and imperfect reporting of deaths and recoveries. We show that collection of randomized data by testing the contacts of infectious individuals regardless of the presence of symptoms would mitigate bias by limiting the covariance between diagnosis and death. Our analysis is supplemented by theoretical and numerical results and a simple and fast open-source codebase.1

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3