Mechanism and effects of the skeletal muscle Nav1.4 inhibition by cannabidiol

Author:

Ghovanloo Mohammad-Reza,Choudhury Koushik,Bandaru Tagore S.,Fouda Mohamed A.,Rayani Kaveh,Rusinova Radda,Phaterpekar Tejas,Nelkenbrecher Karen,Watkins Abeline R.,Poburko Damon,Thewalt Jenifer,Andersen Olaf S.,Delemotte LucieORCID,Goodchild Samuel J.,Ruben Peter C.

Abstract

ABSTRACTCannabis sativa contains active constituents called phytocannabinoids. Some phytocannabinoids are psychotropic and others are not. The primary non-psychotropic phytocannabinoid is cannabidiol (CBD), which is proposed to be therapeutic against many conditions, including muscle spasms. Mechanisms have been proposed for the action of CBD on different systems, involving multiple targets, including the voltage-gated sodium channel (Nav) family, which are heavily implicated in many of the conditions CBD has been reported to relieve. In this study, we investigated the modulatory mechanism of CBD on Nav1.4. Based on previous results, we tested the hypothesis that CBD mechanism of action involves: 1) modulation of membrane elasticity, which indirectly contributes to Nav inhibition; and 2) physical block of the Nav pore. We first performed molecular dynamic (MD) simulations to visualize CBD effects and localization inside the membrane, and then performed NMR to verify the MD results, showing CBD localizes below membrane headgroups. Then, we performed a gramicidin-based fluorescence (GFA) assay that showed CBD alters membrane elasticity. Next, we used site-directed mutagenesis in (F1586A) and around (WWWW) the Nav1.4 pore. Removing the local anesthetic binding site with F1586A reduced CBD block of INa. Occluding the fenestrations with WWWW blocked CBD access from the membrane into the Nav1.4 pore. However, stabilization of inactivation, via CBD-induced changes in membrane elasticity persisted, in WWWW. To investigate the potential therapeutic value of CBD against some Nav1.4 channelopathies, we used a pathogenic variant of Nav1.4, P1158S, known to cause myotonia and periodic paralysis. We found CBD reduces excitability in both wild-type and the mixed myotonia/periodic paralysis variant. Our in-vitro/in-silico results suggest that CBD may have therapeutic value against myotonia. Because Nav1.4 is crucial to skeletal muscle contraction, we used rat diaphragm myography and found the presence of saturating levels of CBD reduces skeletal muscle contraction.SUMMARYWe used multidisciplinary approaches to show the mechanism and pathway by which CBD inhibits the skeletal muscle, Nav1.4. Our results suggest CBD modulates membrane elasticity and directly interacts with Nav1.4 within its pore.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3