Glucose Transporter Expression and Regulation Following a Fast in the Ruby-throated Hummingbird,Archilochus colubris

Author:

Ali Raafay S.,Dick Morag F.ORCID,Muhammad Saad,Sarver Dylan,Wong G. WilliamORCID,Welch Kenneth C.ORCID

Abstract

AbstractHummingbirds subsist almost exclusively on nectar sugar and face extreme challenges blood sugar regulation. Transmembrane sugar transport is mediated by facilitative glucose transporters (GLUTs) and the capacity for sugar transport is dependent on both the activity of GLUTs and their localisation to the plasma membrane (PM). In this study, we determined the relative protein abundance in whole-tissue (WT) homogenates and PM fractions via immunoblot using custom antibodies for GLUT1, GLUT2, GLUT3, and GLUT5 in flight muscle, heart, and, liver of ruby-throated hummingbirds (Archilochus colubris). GLUTs examined were detected in nearly all tissues tested. Hepatic GLUT1 was minimally present in WT homogenates and absent in PM fractions. GLUT5 was expressed in hummingbird flight muscles at levels comparable to that of their liver, consistent with the hypothesised uniquely high fructose-uptake and oxidation capacity of this tissue. To assess GLUT regulation, we fed ruby-throated hummingbirds 1M sucrosead libitumfor 24 hours followed by either 1 hour of fasting or continuedad libitumfeeding until sampling. We measured relative GLUT abundance and concentrations of circulating sugars. Blood fructose concentration in fasted hummingbirds declined from ∼5mM to ∼0.18mM, while fructose-transporting PM GLUT2 and PM GLUT5 did not change in abundance. Blood glucose concentrations remained elevated in both fed and fasted hummingbirds, at ∼30mM, while glucose-transporting PM GLUT1 and PM GLUT3 in the flight muscle and liver, respectively, declined in fasted birds. Our results suggest that glucose uptake capacity is dynamically reduced in response to fasting, allowing for maintenance of elevated blood glucose levels, while fructose uptake capacity remains constitutively elevated promoting depletion of blood total fructose within the first hour of a fast.Summary statementHummingbird ingest nectar rich in glucose and fructose. When fasted, tissue capacity for circulating glucose import declines while remaining elevated for fructose. This may underlie maintenance of high blood glucose and rapid depletion of blood fructose.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3