Opposing directions of stage-specific body length change in a close relative of C. elegans

Author:

Hammerschmith Eric W.,Woodruff Gavin C.ORCID,Phillips Patrick C.

Abstract

AbstractBackgroundBody size is a fundamental organismal trait. However, as body size and ecological contexts change across developmental time, evolutionary divergence may cause unexpected patterns of body size diversity among developmental stages. This may be particularly evident in polyphenic developmental stages specialized for dispersal. The dauer larva is such a stage in nematodes, and Caenorhabditis species disperse by traveling on invertebrate carriers. Here, we describe the morphology of the dispersal dauer larva of the nematode Caenorhabditis inopinata, whose adults can grow to be nearly twice as long as its close relative, the model organism C. elegans.ResultsWe find that the C. inopinata dauer larva is shorter and fatter than those of its close relatives C. elegans, C. briggsae, and C. tropicalis, despite its much longer adult stage. Additionally, many C. inopinata dauer larvae were ensheathed, an apparent novelty in this lineage reminiscent of the infective juveniles of parasitic nematodes. We also found abundant variation in dauer formation frequency among twenty-four wild isolates of C. inopinata, with many strains unable to produce dauer larvae under laboratory conditions.ConclusionMost Caenorhabditis species thrive on rotting plants and disperse on snails, slugs, or isopods (among others) whereas C. inopinata is ecologically divergent and thrives in fresh Ficus septica figs and disperses on their pollinating wasps. These wasps are at least an order of magnitude smaller in length than the vectors of other Caenorhabditis species. While there is some unknown factor of the fig environment that promotes elongated body size in C. inopinata adults, the smaller size of its fig wasp carrier may be driving the reduced body length of its dauer larva. Thus ecological divergence across multiple developmental stages can promote unexpected and opposing changes in body size within a single species.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. Peters RH : The ecological implications of body size, vol. 2: Cambridge University Press; 1986.

2. Bonner JT : Size and cycle: Princeton University Press; 2015.

3. The Ontogenetic Niche and Species Interactions in Size-Structured Populations

4. On the diet of the frogs of the Ceratophryidae: Synopsis and new contributions;South American Journal of Herpetology,2014

5. MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3