Diversification of fungal chitinases and their functional differentiation inHistoplasma capsulatum

Author:

Goughenour Kristie D.,Whalin Janice,Slot Jason C.,Rappleye Chad A.ORCID

Abstract

ABSTRACTChitinases enzymatically hydrolyze chitin, a highly abundant biomolecule with many potential industrial and medical uses in addition to their natural biological roles. Fungi are a rich source of chitinases, however the phylogenetic and functional diversity of fungal chitinases are not well understood. We surveyed fungal chitinases from 373 publicly available genomes, characterized domain architecture, and conducted phylogenetic analyses of the glycoside hydrolase family 18 (GH18) domain. This large-scale analysis does not support the previous division of fungal chitinases into three major clades (A, B, C). The chitinases previously assigned to the “C” clade are not resolved as distinct from the “A” clade in this larger phylogenetic analysis. Fungal chitinase diversity was partly shaped by horizontal gene transfer, and at least one clade of bacterial origin occurs among chitinases previously assigned to the “B” clade. Furthermore, chitin binding domains (CBD) including the LysM domain do not define specific clades but instead are found more broadly across clades of chitinase enzymes. To gain insight into biological function diversity, we characterized all eight chitinases (Cts) from the thermally dimorphic fungus,Histoplasma capsulatum:six A clade (3 A-V, 1 A-IV, and two A-II), one B clade (B-I), and one formerly classified C clade (C-I) chitinases. Expression analyses showed variable induction of chitinase genes in the presence of chitin but preferential expression ofCTS3in the mycelial stage. Activity assays demonstrated that Cts1 (B-I), Cts2 (A-V), Cts3 (A-V), Cts4 (A-V) have endochitinase activities with varying degrees of chitobiosidase function. Cts6 (C-I) has activity consistent with N-acetyl-glucosaminidase exochitinase function and Cts8 (A-II) has chitobiase activity. This suggests chitinase activity is variable even within sub-clades and that predictions of functionality require more sophisticated models.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3