in-silica Analysis of SARS-CoV-2 viral strain using Reverse Vaccinology Approach: A Case Study for USA

Author:

Agarwal AjayORCID

Abstract

AbstractThe recent pandemic of COVID19 that has struck the world is yet to be battled by a potential cure. Countless lives have been claimed due to the existing pandemic and the societal normalcy has been damaged permanently. As a result, it becomes crucial for academic researchers in the field of bioinformatics to combat the existing pandemic. The study involved collecting the virulent strain sequence of SARS-nCoV19 for the country USA against human host through publically available bioinformatics databases. Using in-silica analysis and reverse vaccinology, two leader proteins were identified to be potential vaccine candidates for development of a multi-epitope drug. The results of this study can provide further researchers better aspects and direction on developing vaccine and immune responses against COVID19. This work also aims at promoting the use of existing bioinformatics tools to faster streamline the pipeline of vaccine development.The Situation of COVID19A new infection respiratory disease was first observed in the month of December 2019, in Wuhan, situated in the Hubei province, China. Studies have indicated that the reason of this disease was the emergence of a genetically-novel coronavirus closely related to SARS-CoV. This coronavirus, now named as nCoV-19, is the reason behind the spread of this fatal respiratory disease, now named as COVID-19. The initial group of infections is supposedly linked with the Huanan seafood market, most likely due to animal contact. Eventually, human-to-human interaction occurred and resulted in the transmission of the virus to humans. [13].Since then, nCoV-19 has been rapidly spreading within China and other parts of World. At the time of writing this article (mid-March 2020), COVID-19 has spread across 146 countries. A count of 164,837 cases have been confirmed of being diagnosed with COVID-19, and a total of 6470 deaths have occurred. The cumulative cases have been depicting a rising trend and the numbers are just increasing. WHO has declared COVID-19 to be a “global health emergency”. [14].Current Scenario and ObjectivesCurrently, research is being conducted on a massive level to understand the immunology and genetic characteristics of the disease. However, no cure or vaccine of nCoV-19 has been developed at the time of writing this article.Though, nCoV-19 and SARS-CoV are almost genetically similar, the respiratory syndrome caused by both of them, COVID-19 and SARS respectively, are completely different. Studies have indicated that –SARS was more deadly but much less infectious than COVID-19”.-World Health Organization

Publisher

Cold Spring Harbor Laboratory

Reference15 articles.

1. ViPR: an open bioinformatics database and analysis resource for virology research

2. Charif D , Lobry J (2007). “SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis.” In Bastolla U , Porto M , Roman H , Vendruscolo M (eds.), Structural approaches to sequence evolution: Molecules, networks, populations, series Biological and Medical Physics, Biomedical Engineering, 207-232. Springer Verlag, New York. ISBN: 978-3-540-35305-8.

3. Pagès, H. , Aboyoun, P. , Gentleman, R. and DebRoy, S. , 2017. Biostrings: Efficient manipulation of biological strings. R package version, 2(0).

4. Osorio, D. , Rondón-Villarrea, P. and Torres, R. , 2015. Peptides: a package for data mining of antimicrobial peptides. R Journal, 7(1).

5. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3