Strain Level Microbial Detection and Quantification with Applications to Single Cell Metagenomics

Author:

Zhu Kaiyuan,Robinson Welles,Schäffer Alejandro A.,Xu Junyan,Ruppin Eytan,Ergun A. Funda,Ye Yuzhen,Sahinalp S. Cenk

Abstract

AbstractThe identification and quantification of microbial abundance at the species or strain level from sequencing data is crucial for our understanding of human health and disease. Existing approaches for microbial abundance estimation either use accurate but computationally expensive alignment-based approaches for species-level estimation or less accurate but computationally fast alignment-free approaches that fail to classify many reads accurately at the species or strain-level.Here we introduce CAMMiQ, a novel combinatorial solution to the microbial identification and abundance estimation problem, which performs better than the best used tools on simulated and real datasets with respect to the number of correctly classified reads (i.e., specificity) by an order of magnitude and resolves possible mixtures of similar genomes.As we demonstrate, CAMMiQ can better distinguish between single cells deliberately infected with distinct Salmonella strains and sequenced using scRNA-seq reads than alternative approaches. We also demonstrate that CAMMiQ is also more accurate than the best used approaches on a variety of synthetic genomic read data involving some of the most challenging bacterial genomes derived from NCBI RefSeq database; it can distinguish not only distinct species but also closely related strains of bacteria.The key methodological innovation of CAMMiQ is its use of arbitrary length, doubly-unique substrings, i.e. substrings that appear in (exactly) two genomes in the input database, instead of fixed-length, unique substrings. To resolve the ambiguity in the genomic origin of doubly-unique substrings, CAMMiQ employs a combinatorial optimization formulation, which can be solved surprisingly quickly. CAMMiQ’s index consists of a sparsified subset of the shortest unique and doubly-unique substrings of each genome in the database, within a user specified length range and as such it is fairly compact. In short, CAMMiQ offers more accurate genomic identification and abundance estimation than the best used alternatives while using similar computational resources.Availabilityhttps://github.com/algo-cancer/CAMMiQ

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3