ASSESSING THE RELATIONSHIP BETWEEN MONOALLELIC PARK2 MUTATIONS AND PARKINSON’S RISK

Author:

Lubbe Steven J,Bustos Bernabe,Hu Jing,Krainc Dimitri,Joseph Theresita,Hehir Jason,Tan Manuela,Zhang Weijia,Escott-Price Valentina,Williams Nigel M,Blauwendraat Cornelis,Singleton Andrew B,Morris Huw R,

Abstract

ABSTRACTBiallelic PARK2 (Parkin) mutations cause autosomal recessive Parkinson’s (PD); however, the role of monoallelic PARK2 mutations as a risk factor for PD remains unclear. We investigated the role of single heterozygous PARK2 mutations in three large independent case-control cohorts totalling 10,858 PD cases and 8,328 controls. Overall, after exclusion of biallelic carriers, single PARK2 mutations were more common in PD than controls conferring a >1.5-fold increase in risk of PD (P=0.035), with meta-analysis (19,574 PD cases and 468,488 controls) confirming increased risk (OR=1.65, P=3.69E-07). Carriers were shown to have significantly younger ages at onset compared to non-carriers (NeuroX: 56.4 vs. 61.4 years; Exome: 38.5 vs. 43.1 years). Stratifying by mutation type, we provide preliminary evidence for a more pathogenic risk profile for single PARK2 copy number variant (CNV) carriers compared to single nucleotide variant carriers. Studies that did not assess biallelic PARK2 mutations or consist of predominantly early-onset cases may be biasing these estimates, and removal of these resulted in a loss of association (OR=1.23, P=0.614; n=4). Importantly, when we looked for additional CNVs in 30% of PD cases with apparent monoallellic PARK2 mutations we found that 44% had biallelic mutations suggesting that previous estimates may be influenced by cryptic biallelic mutation status. While this study supports the association of single PARK2 mutations with PD, it highlights confounding effects therefore caution is needed when interpreting current risk estimates. Together, we demonstrate that comprehensive assessment of biallelic mutation status is essential when elucidating PD risk associated with monoallelic PARK2 mutations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3