Insights into the Binding Mechanism of Ascorbic Acid and Violaxanthin with Violaxanthin De-Epoxidase (VDE) and Chlorophycean Violaxanthin De-Epoxidase (CVDE) Enzymes: Docking, Molecular Dynamics, and Free Energy Analysis

Author:

Biswal Satyaranjan,Sen Gupta Parth Sarthi,Bhat Haamid Rasool,Rana Malay Kumar

Abstract

AbstractPhotosynthetic organisms have evolved to work under low and high lights in photoprotection, acting as a scavenger of reactive oxygen species. The light dependent xanthophyll cycle involved in this process is performed by a key enzyme (present in the thylakoid lumen) Violaxanthin De-Epoxidase (VDE) in the presence of violaxanthin and ascorbic acid substrates. Phylogenetically, VDE is found to be connected with an ancestral enzyme Chlorophycean Violaxanthin De-Epoxidase (CVDE) present in the green algae on the stromal side of the thylakoid membrane. However, the structure and functions of CVDE were not known. In search of functional similarities involving this cycle, the structure, binding conformation, stability, and interaction mechanism of CVDE are explored with the two substrates in comparison to VDE. The structure of CVDE was determined by homology modeling and validated. In-silico docking (of first-principles-optimized substrates) revealed it has a larger catalytic domain than VDE. A thorough analysis of the binding affinity and stability of four enzyme-substrate complexes are performed by computing free energies and its decomposition, the root-mean-square deviation (RMSD) and fluctuation (RMSF), the radius of gyration, salt-bridge and hydrogen bonding interactions in molecular dynamics. Based on these, violaxanthin interacts with CVDE to the similar extent as that of VDE, hence its role is expected to be the same for both the enzymes. On the contrary, ascorbic acid has a weaker interaction with CVDE than VDE. As these interactions drive epoxidation or de-epoxidation process in the xanthophyll cycle, it immediately discerns that either ascorbic acid does not take part in de-epoxidation or this process requires a different cofactor because of the weaker interaction of ascorbic acid with CVDE in comparison to VDE.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3