Endochondral bone in an Early Devonian ‘placoderm’ from Mongolia

Author:

Brazeau Martin D.ORCID,Giles SamORCID,Dearden Richard P.ORCID,Jerve Anna,Ariunchimeg Y.A.,Zorig E.,Sansom Robert,Guillerme ThomasORCID,Castiello Marco

Abstract

Endochondral bone is the main internal skeletal tissue of nearly all osteichthyans—the group comprising more than 60,000 living species of bony fishes and tetrapods. Chondrichthyans (sharks and their kin) are the living sister group of osteichthyans and have cartilaginous endoskeletons, long considered the ancestral condition for all jawed vertebrates (gnathostomes). The absence of bone in modern jawless fishes and the absence of endochondral ossification in early fossil gnathostomes appears to lend support to this conclusion. Here we report the discovery of extensive endochondral bone in Minjinia turgenensis, a new genus and species of ‘placoderm’-like fish from the Early Devonian (Pragian) of western Mongolia described using x-ray computed microtomography (XR-µCT). The fossil consists of a partial skull roof and braincase with anatomical details providing strong evidence of placement in the gnathostome stem group. However, its endochondral space is filled with an extensive network of fine trabeculae resembling the endochondral bone of osteichthyans. Phylogenetic analyses place this new taxon as a proximate sister group of the gnathostome crown. These results provide direct support for theories of generalised bone loss in chondrichthyans. Furthermore, they revive theories of a phylogenetically deeper origin of endochondral bone and its absence in chondrichthyans as a secondary condition.

Publisher

Cold Spring Harbor Laboratory

Reference62 articles.

1. Hall, B. K. Bones and Cartilage. (Academic Press, 2005).

2. Janvier, P. Early Vertebrates. (Oxford University Press, 1996).

3. Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development;Journal of Experimental Zoology,2006

4. Lungfishes, tetrapods, paleontology, and plesiomorphy;Bull Am Mus Nat Hist,1981

5. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from Upper Devonian of Western Australia;Bull Br Mus nat Hist (Geol),1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3