Author:
Jaishankar Nivedita,Muthamilselvan Sangeetha,Palaniappan Ashok
Abstract
ABSTRACTMammalian ABCB1 P-glycoprotein is an ATP- dependent efflux pump with broad substrate specificity associated with cellular drug resistance. Homologous to this role in mammalian biology, the P-glycoprotein of agents of neglected tropical diseases (NTDs) mediates the emergence of multidrug-resistance phenotypes. The clinical and socioeconomic implications of NTDs are exacerbated by the lack of research interest among Big Pharma for treating such conditions. This work aims to characterise P-gp homologues in certain agents of key NTDs, namely
Protozoa: Leishmania major, Trypanosoma cruzi;Helminths: Onchocerca volvulus, Schistosoma mansoni.PSI-BLAST searches against the genome of each of these organisms confirmed the presence of P-gp homologues. Each homologue was aligned against five P-gp sequences of known structure, to identify the most suitable template based on sequence homology, phylogenetic nearest neighbor, and query coverage. Antibiotics used in the current line of therapy against each of these pathogens were identified using PubChem and their SMILES structures were converted to PDB using BABEL software. Potential antibiotics to test against the set of FDA-approved antibiotics were identified based on similarity to the chemical class of the known drugs and repurposing of the existing drugs. Docking studies of the respective modelled Pgp structures and the set of antibiotic ligands were carried out using AutoDock and the most tenable target-ligand conformations were assessed. The interacting residues within 4.5 Å of the ligand were identified, and the binding pockets were studied. The relative efficacy of the new drugs and the interacting pump residues were identified. Our studies could lay the foundation for the development of effective synergistic or new therapies against key neglected tropical diseases.
Publisher
Cold Spring Harbor Laboratory