Small molecules exploiting structural differences within microRNA-200 precursors family members reverse a type 2 diabetes phenotype

Author:

Haniff Hafeez S.,Liu Xiaohui,Knerr Laurent,Lemurell Malin,Abegg Daniel,Adibekian Alexander,Disney Matthew D.ORCID

Abstract

AbstractMicroRNA families are pervasive in the human transcriptome, but specific targeting of individual members is a challenge because of sequence homology. Many of the secondary structures of the precursors to these miRs (pre-miRs), however, are quite different. Here, we demonstrate both in vitro and in cellulis that design of structure-specific small molecules can inhibit specific miR family members to modulate a disease pathway. In particular, the miR-200 family consists five miRs, miR-200a, −200b, −200c, −141, and - 429, and is associated with Type II Diabetes (T2D). We designed a small molecule that potently and selectively targets pre-miR-200c’s structure. The compound reverses a pro-apoptotic effect in a pancreatic β-cell model. In contrast, oligonucleotides targeting the RNA’s sequence inhibit all family members. Global proteomics analysis further demonstrates selectivity for miR-200c. Collectively, these studies establish that miR-200c plays an important role in T2D and that small molecules targeting RNA structure can be an important complement to oligonucleotides targeting sequence.Significance StatementThe most common way to develop medicines targeting RNA is by using oligonucleotides that target its sequence by using base pairing. Some RNAs, however, have similar sequences and thus are impossible to target selectively by using oligonucleotides. Here, we show that a class of RNAs that have similar sequences emerge from precursors that have very different structures. Exploiting these structural differences afforded a selective compound. In particular, the selective small molecule targets a member of the microRNA (miR)-200 family, the overexpression of which is linked to diabetes and pancreatic cell death. Selective inhibition of family member miR-200c alleviates pancreatic cell death, and thus the small molecule provides a path to the treatment of diabetes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3