Rub1/NEDD8, a ubiquitin-like modifier, is also a ubiquitin modifier

Author:

Gurevich Sylvia Zerath,Sinha Abhishek,Longworth Joseph,Singh Rajesh K.,Lemma Betsegaw E.,Thakur Anita,Popp Oliver,Kornitzer Daniel,Reis Noa,Scheffner Martin,Dittmar Gunnar,Pick Elah,Fushman David,Glickman Michael H.

Abstract

ABSTRACTOf all ubiquitin-like small protein modifiers, Rub1/NEDD8 is the closest kin of ubiquitin in sequence and in structure. Despite their profound similarities, prevalence of ubiquitin and of Rub1 is starkly different: targets of ubiquitin modification reach into the thousands, whereas unique targets of Rub1/NEDD8 appear limited to one family of proteins, Cullins. This distinction is likely due to dedicated E1 activating enzymes that select either one or the other and relay the modifier until it is covalently attached to a target. To convert typical neddylation targets for modification by ubiquitin, and vice versa, we designed reciprocal substitutions at position 72 of Rub1 and of ubiquitin to render them substrates for activation by their non-cognate E1 activating enzymes. We found that this single amino acid is sufficient to distinguish between Ub and Rub1 in living cells, and determine their targets. Thus, modification of Cullins by UbR72T could compensate for loss of Rub1, even as it maintained its ability to polymerize and direct conjugates for degradation. Conversely, Rub1T72R activated by ubiquitin-activating enzyme entered into the ubiquitination cascade, however was not efficiently polymerized, essentially capping polyubiquitin chains. Upon shortage of free ubiquitin under stress, even native Rub1 spilled-over into the ubiquitinome suppressing polyubiquitination. By contrast, the need to maintain monomeric modifications on unique targets is a likely explanation for why the Rub1-activating enzyme strictly discriminates against ubiquitin. Swapping Rub1 and ubiquitin signals uncovered a reason for maintaining two separate pathways across eukaryotic kingdom.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3