Crossing the Blood-Brain-Barrier: A bifunctional liposome for BDNF gene delivery – A Pilot Study

Author:

Diniz Danielle M.,Franze Silvia,Homberg Judith R.

Abstract

AbstractTo achieve their therapeutic effect on the brain, molecules need to pass the blood-brain-barrier (BBB). Many pharmacological treatments of neuropathologies encounter the BBB as a barrier, hindering their effective use. Pharmaceutical nanotechnology based on optimal physicochemical features and taking advantage of naturally occurring permeability mechanisms, nanocarriers such as liposomes offer an attractive alternative to allow drug delivery across the BBB. Liposomes are spherical bilayer lipid-based nanocapsules that can load hydrophilic molecules in their inner compartment and on their outer surface can be functionally modified by peptides, antibodies and polyethyleneglycol (PEG). When composed of cationic lipids, liposomes can serve as gene delivery devices, encapsulating and protecting genetic material from degradation and promoting nonviral cell transfection. In this study, we aimed to develop a liposomal formulation to encapsulate a plasmid harbouring brain-derived neurotrophic factor (BDNF) and infuse these liposomes via the peripheral bloodstream into the brain. To this end, liposomes were tagged with PEG, transferrin, and arginine and characterized regarding their physical properties, such as particle size, zeta-potential and polydispersity index (PDI). Moreover, we selected liposomes preparations for plasmid DNA (pDNA) encapsulation and checked for loading efficiency, in vitro cell uptake, and transfection. The preliminary results from this pilot study revealed that we were able to replicate the liposomes synthesis described in literature, achieving compatible size, charge, PDI, and loading efficiency. However, we could not properly determine whether the conjugation of the surface ligands transferrin and arginine to PEG worked and whether they were attached to the surface of the liposomes. Additionally, we were not able to see transfection in SH-SY5Y cells after 24 or 48 hours of incubation with the pDNA loaded liposomes. In conclusion, we synthesized liposomes encapsulation pBDNF, however, further research will be necessary to address the complete physicochemical characterization of the liposomes. Furthermore, preclinical studies will be helpful to verify transfection efficiency, cytotoxicity, and in the future, safe delivery of BDNF through the BBB.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3