DNA binding reorganizes the intrinsically disordered C-terminal region of PSC inDrosophilaPRC1

Author:

Kang Jin Joo,Faubert Denis,Boulais Jonathan,Francis Nicole J.

Abstract

AbstractPolycomb Group (PcG) proteins regulate gene expression by modifying chromatin. A key PcG complex, Polycomb Repressive Complex 1 (PRC1), has two activities: a ubiquitin ligase activity for histone H2A, and a chromatin compacting activity. InDrosophila, the Posterior Sex Combs (PSC) subunit of PRC1 is central to both activities. The N-terminal homology region (HR) of PSC assembles into PRC1, including partnering with dRING to form the ubiquitin ligase for H2A. The intrinsically disordered C-terminal region of PSC (PSC-CTR) compacts chromatin, and inhibits chromatin remodeling and transcriptionin vitro. Both the PSC-HR and the PSC-CTR are essentialin vivo. To understand how these two activities may be coordinated in PRC1, we used cross-linking mass spectrometry (XL-MS) to analyze the conformations of the PSC-CTR in PRC1 and how they change on binding DNA. XL-MS identifies interactions between the PSC-CTR and the core of PRC1, including between the PSC-CTR and PSC-HR. New contacts and overall more compacted PSC-CTR conformations are induced by DNA binding. Protein footprinting of accessible lysine residues in the PSC-CTR reveals an extended, bipartite candidate DNA/chromatin binding surface. Our data suggest a model in which DNA (or chromatin) follows a long path on the flexible PSC-CTR. Intramolecular interactions of the PSC-CTR detected by XL-MS can bring the high affinity DNA/chromatin binding region close to the core of PRC1 without disrupting the interface between the ubiquitin ligase and the nucleosome. Our approach may be applicable to understanding the global organization of other large IDRs that bind nucleic acids.HighlightsAn intrinsically disordered region (IDR) in Polycomb protein PSC compacts chromatinCross-linking mass spectrometry (XL-MS) was used to analyze topology of the PSC IDRProtein footprinting suggests a bipartite DNA binding surface in the PSC IDRA model for the DNA-driven organization of the PSC IDRCombining XL-MS and protein footprinting is a strategy to understand nucleic acid binding IDRsAbstract Figure

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3