Harlequin Frogs (Lysapsus) prefer mild places to park

Author:

Ganci Carolina CunhaORCID,Ortega ZaidaORCID,Provete Diogo B.ORCID

Abstract

AbstractTemperature affects most aspects of ectotherms’ life history, including physiology and behavior. Studying thermal sensitivity of jumping performance in frogs can help understanding the influence of temperature on different aspects of frog life. Still, studies on the effects of temperature on amphibians are commonly carried out on terrestrial and tree species, creating a gap for aquatic species. We experimentally tested the thermal sensitivity of jumping performance of the Uruguay Harlequin Frog, Lysapsus limellum, assessing three measures: response time, distance of first jump, and total distance travelled. We hypothesized that individuals submitted to extreme temperatures would increase response time, decrease first jump distance, and increase total jump distance. We used an arena with a gradient of air temperature (Ta) ranging from 20 to 40 °C. We placed frogs at different Ta and stimulated them to jump. Then, we analysed the influence of Ta on the three estimates of jumping performance, using generalized additive models. We found that temperature affected all three measurements of jumping performance, but some relationships were stronger than others. Extreme temperatures increased response time, reduced first jump distance, and increased total distance. The effect was weaker for response time and first jump distance, but substantially stronger for total distance jumped. Although individuals under extreme temperatures experience a reduced jumping performance, they travelled longer distances to find areas with milder temperatures. Thus, we showed that L. limellum thermoregulates by means of behavior, moving through places at different thermal conditions. Additionally, benefits of displacing to thermally suitable places -in terms of enhanced jumping performance-are bigger than the costs of jumping at reduced locomotor performance, at least under experimental conditions. Our results can help understand how climate change affects the locomotor performance of Neotropical amphibians.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3