Abstract
AbstractIt is not well understood how physiological environmental conditions and nutrient availability influence cancer cell proliferation. Production of oxidized biomass, which requires regeneration of the cofactor NAD+, can limit cancer cell proliferation1-5. However, it is currently unclear which specific metabolic processes are constrained by electron acceptor availability, and how they affect cell proliferation. Here, we use computational and experimental approaches to demonstrate that de novo lipid biosynthesis can impose an increased demand for NAD+ in proliferating cancer cells. While some cancer cells and tumors synthesize a substantial fraction of their lipids de novo6, we find that environmental lipids are crucial for proliferation in hypoxia or when the mitochondrial electron transport chain is inhibited. Surprisingly, we also find that even the reductive glutamine carboxylation pathway to produce fatty acids is impaired when cancer cells are limited for NAD+. Furthermore, gene expression analysis of 34 heterogeneous tumor types shows that lipid biosynthesis is strongly and consistently negatively correlated with hypoxia, whereas expression of genes involved in lipid uptake is positively correlated with hypoxia. These results demonstrate that electron acceptor availability and access to environmental lipids can play an important role in determining whether cancer cells engage in de novo lipogenesis to support proliferation.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献