Cancer cells depend on environmental lipids for proliferation when electron acceptors are limited

Author:

Li Zhaoqi,Ji Brian W.,Dixit Purushottam D.ORCID,Lien Evan C.,Tchourine Konstantine,Hosios Aaron M.,Abbott Keene L.,Westermark Anna M.,Gorodetsky Elizabeth F.,Sullivan Lucas B.,Vander Heiden Matthew G.ORCID,Vitkup Dennis

Abstract

AbstractIt is not well understood how physiological environmental conditions and nutrient availability influence cancer cell proliferation. Production of oxidized biomass, which requires regeneration of the cofactor NAD+, can limit cancer cell proliferation1-5. However, it is currently unclear which specific metabolic processes are constrained by electron acceptor availability, and how they affect cell proliferation. Here, we use computational and experimental approaches to demonstrate that de novo lipid biosynthesis can impose an increased demand for NAD+ in proliferating cancer cells. While some cancer cells and tumors synthesize a substantial fraction of their lipids de novo6, we find that environmental lipids are crucial for proliferation in hypoxia or when the mitochondrial electron transport chain is inhibited. Surprisingly, we also find that even the reductive glutamine carboxylation pathway to produce fatty acids is impaired when cancer cells are limited for NAD+. Furthermore, gene expression analysis of 34 heterogeneous tumor types shows that lipid biosynthesis is strongly and consistently negatively correlated with hypoxia, whereas expression of genes involved in lipid uptake is positively correlated with hypoxia. These results demonstrate that electron acceptor availability and access to environmental lipids can play an important role in determining whether cancer cells engage in de novo lipogenesis to support proliferation.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3