Ordered dephosphorylation initiated by the selective proteolysis of cyclin B drives mitotic exit

Author:

Holder James,Mohammed Shabaz,Barr Francis A.ORCID

Abstract

ABSTRACTAPC/C-mediated proteolysis of cyclin B and securin promotes entry into anaphase, inactivating CDK1 and permitting chromosome segregation, respectively. Reduction of CDK1 activity relieves inhibition of the CDK1-opposing phosphatases PP1 and PP2A-B55 leading to dephosphorylation of substrates crucial for mitotic exit. Meanwhile, continued APC/C activity is required to target various proteins, including Aurora and Polo kinases, for degradation. Together, these activities orchestrate a complex series of events during mitotic exit. However, the relative importance of regulated proteolysis and dephosphorylation in dictating the order and timing of these events remains unclear. Using high temporal-resolution mass spectrometry, we compare the relative extent of proteolysis and protein dephosphorylation. This reveals highly-selective rapid (∼5min half-life) proteolysis of cyclin B, securin and geminin at the metaphase to anaphase transition, followed by slow proteolysis (>60 min half-life) of other mitotic regulators. Protein dephosphorylation requires APC/C-dependent destruction of cyclin B and was resolved into PP1-dependent fast, intermediate and slow categories with unique sequence motifs. We conclude that dephosphorylation initiated by the selective proteolysis of cyclin B drives the bulk of changes observed during mitotic exit.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3