Abstract
AbstractUsing single-molecule imaging with enhanced time resolutions down to 5 ms, we found that CD59-cluster rafts and GM1-cluster rafts stably induced in the outer leaflet of the plasma membrane (PM), which triggered the activation of Lyn, H-Ras, and ERK, continually recruited Lyn and H-Ras right beneath them in the inner leaflet, with dwell lifetimes of <0.1 s. The detection was possible due to the enhanced time resolutions employed here. The recruitment depended on the PM cholesterol and saturated alkyl chains of Lyn and H-Ras, whereas it was blocked by the non-raftophilic transmembrane protein moiety and unsaturated alkyl chains linked to the inner-leaflet molecules. Since GM1-cluster rafts recruited Lyn and H-Ras as efficiently as CD59-cluster rafts, and the protein moieties of Lyn and H-Ras were not required for the recruitment, we conclude that the transbilayer raft phases induced by the outer-leaflet stabilized rafts recruit lipid-anchored signaling molecules by lateral raft-lipid interactions, and thus serve as a key signal transduction platform.SummaryHigh-speed single-molecule imaging indicated that CD59-cluster rafts and GM1-cluster rafts stably induced in the plasma membrane outer leaflet generated nano-scale transbilayer raft phases, which continually and transiently recruited Lyn and H-Ras in the inner leaflet by cooperative raft-lipid interactions.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献