High-speed single-molecule imaging reveals signal transduction by induced transbilayer raft phases

Author:

Koyama-Honda IkukoORCID,Fujiwara Takahiro K.ORCID,Kasai Rinshi S.ORCID,Suzuki Kenichi G. N.,Kajikawa Eriko,Tsuboi Hisae,Tsunoyama Taka A.ORCID,Kusumi AkihiroORCID

Abstract

AbstractUsing single-molecule imaging with enhanced time resolutions down to 5 ms, we found that CD59-cluster rafts and GM1-cluster rafts stably induced in the outer leaflet of the plasma membrane (PM), which triggered the activation of Lyn, H-Ras, and ERK, continually recruited Lyn and H-Ras right beneath them in the inner leaflet, with dwell lifetimes of <0.1 s. The detection was possible due to the enhanced time resolutions employed here. The recruitment depended on the PM cholesterol and saturated alkyl chains of Lyn and H-Ras, whereas it was blocked by the non-raftophilic transmembrane protein moiety and unsaturated alkyl chains linked to the inner-leaflet molecules. Since GM1-cluster rafts recruited Lyn and H-Ras as efficiently as CD59-cluster rafts, and the protein moieties of Lyn and H-Ras were not required for the recruitment, we conclude that the transbilayer raft phases induced by the outer-leaflet stabilized rafts recruit lipid-anchored signaling molecules by lateral raft-lipid interactions, and thus serve as a key signal transduction platform.SummaryHigh-speed single-molecule imaging indicated that CD59-cluster rafts and GM1-cluster rafts stably induced in the plasma membrane outer leaflet generated nano-scale transbilayer raft phases, which continually and transiently recruited Lyn and H-Ras in the inner leaflet by cooperative raft-lipid interactions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3