Binding of Leishmania infantum LPG to the midgut is not sufficient to define vector competence in Lutzomyia longipalpis sand flies

Author:

Coutinho-Abreu Iliano V.ORCID,Oristian James,de Castro Waldionê,Wilson Timothy R.,Meneses Claudio,Soares Rodrigo P.,Borges Valéria M.,Descoteaux Albert,Kamhawi Shaden,Valenzuela Jesus G.

Abstract

AbstractThe major surface lipophosphoglycan (LPG) of Leishmania parasites is critical to vector competence in restrictive sand fly vectors by mediating Leishmania attachment to the midgut epithelium, considered essential to parasite survival and development. However, the relevance of LPG for sand flies that harbor multiple species of Leishmania remains elusive. We tested binding of Leishmania infantum wild type (WT), LPG-defective (Δlpg1 mutants) and add-back lines (Δlpg1 + LPG1) to sand fly midguts in vitro and their survival in Lutzomyia longipalpis sand flies in vivo. Le. infantum WT parasites attached to the Lu. longipalpis midgut in vitro with late-stage parasites binding to midguts in significantly higher numbers compared to early-stage stage promastigotes. Δlpg1 mutants did not bind to Lu. longipalpis midguts, and this was rescued in the Δlpg1 + LPG1 lines, indicating that midgut binding is mediated by LPG. When Lu. longipalpis sand flies were infected with either Le. infantum WT, Δlpg1, or Δlpg1 + LPG1 of the BH46 or BA262 strains, the BH46 Δlpg1 mutant, but not the BA262 Δlpg1 mutant, survived and grew to similar numbers as the WT and Δlpg1 + LPG1 lines. Exposure of BH46 and BA262 Δlpg1 mutants to blood engorged midgut extracts led to the mortality of the BA262 Δlpg1 but not the BH46 Δlpg1 parasites. These findings suggest that Le. infantum LPG protects parasites on a strain-specific basis early in infection, likely against toxic components of blood digestion, however, it is not necessary to prevent Le. infantum evacuation along with the feces in the permissive vector Lu. longipalpis.IMPORTANCEIt is well established that LPG is sufficient to define the vector competence of restrictive sand fly vectors to Leishmania parasites. However, the permissiveness of other sand flies to multiple Leishmania species suggests that other factors might define vector competence for these vectors. In this study, we investigated the underpinnings of Leishmania infantum survival and development in its natural vector Lutzomyia longipalpis. We found out that LPG-mediated midgut binding persists in late-stage parasites. This observation is paradigm-changing and suggests that only a subset of infective metacyclics lose their ability to attach to the midgut with implications for parasite transmission dynamics. However, our data also demonstrate that LPG is not a determining factor in Leishmania infantum retention in the midgut of Lutzomyia longipalpis, a permissive vector. Rather, LPG appears to be more important in protecting some parasite strains from the toxic environment generated during blood meal digestion in the insect gut. Thus, the relevance of LPG in parasite development in permissive vectors appears to be complex and should be investigated on a strain-specific basis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3