A novel Enterococcus faecalis heme transport regulator (FhtR) is a heme sensor in the gastrointestinal tract

Author:

Saillant Vincent,Lipuma Damien,Ostyn Emeline,Joubert Laetitia,Boussac Alain,Guerin Hugo,Brandelet G.,Arnoux P.ORCID,Lechardeur DelphineORCID

Abstract

AbstractEnterococcus faecalis is a commensal Gram-positive pathogen found in the intestines of mammals, and is also a leading cause of severe infections occurring mainly among antibiotic-treated dysbiotic hospitalized patients. Like most intestinal bacteria, E. faecalis does not synthesize heme. Nevertheless, environmental heme can improve E. faecalis fitness by activating respiration metabolism and a catalase that limits hydrogen peroxide stress. Since free heme also generates redox toxicity, its intracellular levels need to be strictly controlled. Here, we describe a unique transcriptional regulator, FhtR, (Faecalis heme transport Regulator), which manages heme homeostasis by controlling an HrtBA-like efflux pump (named HrtBAEf). We show that FhtR, by managing intracellular heme concentration, regulates the functional expression of the heme dependent catalase A (KatA), thus participating in heme detoxification. The biochemical features of FhtR binding to DNA, and its interactions with heme that induce efflux, are characterized. The FhtR-HrtBAEf system is shown to be relevant in a mouse intestinal model. We further show that FhtR senses heme from blood and hemoglobin but also from crossfeeding by Escherichia coli. These findings bring to light the central role of FhtR heme sensing in response to heme fluctuations within the gastrointestinal tract, which allow this pathogen to limit heme toxicity while ensuring expression of an oxidative defense system.ImportanceEnterococcus faecalis, a normal, harmless colonizer of the human intestinal flora can cause severe infectious diseases in immunocompromised patients, particularly those that have been heavily treated with antibiotics. Therefore, it is important to understand the factors that promote its resistance and its virulence. Here, we report a new mechanism used by E. faecalis to detect the concentration of heme, an essential but toxic metabolite that is present in the intestine. E. faecalis needs to scavenge this molecule to respire and fight stress generated by oxydants. Heme sensing triggers the synthesis of a heme efflux pump that balances the amount of heme inside the bacteria. With this mechanism, E. faecalis can use heme without suffering from its toxicity.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3