Mechanism Underlying Anti-Markovnikov Addition in the Reaction of Pentalenene Synthase

Author:

Matos Jason O.,Kumar Ramasamy P.ORCID,Ma Alison C.,Patterson MacKenzie,Krauss Isaac J.ORCID,Oprian Daniel D.ORCID

Abstract

AbstractMost terpene synthase reactions follow Markovnikov rules for formation of high energy carbenium ion intermediates. However, there are notable exceptions. For example, pentalenene synthase (PS) undergoes an initial anti-Markovnikov cyclization reaction followed by a 1,2-hydride shift to form an intermediate humulyl cation with positive charge on the secondary carbon C9 of the farnesyl diphosphate substrate. The mechanism by which these enzymes stabilize and guide regioselectivity of secondary carbocations has not heretofore been elucidated. In an effort to better understand these reactions, we grew crystals of apo-PS, soaked them with the non-reactive substrate analog 12,13-difluorofarnesyl diphosphate, and solved the x-ray structure of the resulting complex at 2.2 Å resolution. The most striking feature of the active site structure is that C9 is positioned 3.5 Å above the center of the side chain benzene ring of residue F76, perfectly poised for stabilization of the charge through a cation-π interaction. In addition, the main chain carbonyl of I177 and neighboring intramolecular C6,C7-double bond are positioned to stabilize the carbocation by interaction with the face opposite that of F76. Mutagenesis experiments also support a role for residue 76 in cation-π interactions. Most interesting is the F76W mutant which gives a mixture of products that likely result from stabilizing a positive charge on the adjacent secondary carbon C10 in addition to C9 as in the wild-type enzyme. The crystal structure of the F76W mutant clearly shows carbons C9 and C10 centered above the fused benzene and pyrrole rings of the indole side chain, respectively, such that a carbocation at either position could be stabilized in this complex, and two anti-Markovnikov products, pentalenene and humulene, are formed. Finally, we show that there is a rough correlation (although not absolute) of an aromatic side chain (F or Y) at position 76 in related terpene synthases from Streptomyces that catalyze similar anti-Markovnikov addition reactions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3