CTDPathSim: Cell line-tumor deconvoluted pathway-based similarity in the context of precision medicine in cancer *

Author:

Bose Banabithi,Bozdag Serdar

Abstract

ABSTRACTIn cancer research and drug development, human tumor-derived cell lines are used as popular model for cancer patients to evaluate the biological functions of genes, drug efficacy, side-effects, and drug metabolism. Using these cell lines, the functional relationship between genes and drug response and prediction of drug response based on genomic and chemical features have been studied. Knowing the drug response on the real patients, however, is a more important and challenging task. To tackle this challenge, some studies integrate data from primary tumors and cancer cell lines to find associations between cell lines and tumors. These studies, however, do not integrate multi-omics datasets to their full extent. Also, several studies rely on a genome-wide correlation-based approach between cell lines and bulk tumor samples without considering the heterogeneous cell population in bulk tumors. To address these gaps, we developed a computational pipeline, CTDPathSim, a pathway activity-based approach to compute similarity between primary tumor samples and cell lines at genetic, genomic, and epigenetic levels integrating multi-omics datasets. We utilized a deconvolution method to get cell type-specific DNA methylation and gene expression profiles and computed deconvoluted methylation and expression profiles of tumor samples. We assessed CTDPathSim by applying on breast and ovarian cancer data in The Cancer Genome Atlas (TCGA) and cancer cell lines data in the Cancer Cell Line Encyclopedia (CCLE) databases. Our results showed that highly similar sample-cell line pairs have similar drug response compared to lowly similar pairs in several FDA-approved cancer drugs, such as Paclitaxel, Vinorelbine and Mitomycin-c. CTDPathSim outperformed state-of-the-art methods in recapitulating the known drug responses between samples and cell lines. Also, CTDPathSim selected higher number of significant cell lines belonging to the same cancer types than other methods. Furthermore, our aligned cell lines to samples were found to be clinical biomarkers for patients’ survival whereas unaligned cell lines were not. Our method could guide the selection of appropriate cell lines to be more intently serve as proxy of patient tumors and could direct the pre-clinical translation of drug testing into clinical platform towards the personalized therapies. Furthermore, this study could guide the new uses for old drugs and benefits the development of new drugs in cancer treatments.CCS CONCEPTSComputational biologyGenomicsSystems biologyBioinformaticsGeneticsACM Reference formatBanabithi Bose, Serdar Bozdag. 2020. CTDPathSim: Cell line-tumor deconvoluted pathway-based similarity in the context of precision medicine in cancer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3