Reconstructing Full-Field Flapping Wing Dynamics from Sparse Measurements

Author:

Johns William,Davis Lisa,Jankauski MarkORCID

Abstract

AbstractFlapping insect wings deform during flight. This deformation benefits the insect’s aerodynamic force production as well as energetic efficiency. However, it is challenging to measure wing displacement field in flying insects. Many points must be tracked over the wing’s surface to resolve its instantaneous shape. To reduce the number of points one is required to track, we propose a physics-based reconstruction method called System Equivalent Reduction Expansion Processes (SEREP) to estimate wing deformation and strain from sparse measurements. Measurement locations are determined using a Weighted Normalized Modal Displacement (NMD) method. We experimentally validate the reconstruction technique by flapping a paper wing from 5-9 Hz with 45° and measuring strain at three locations. Two measurements are used for the reconstruction and the third for validation. Strain reconstructions had a maximal error of 30% in amplitude. We extend this methodology to a more realistic insect wing through numerical simulation. We show that wing displacement can be estimated from sparse displacement or strain measurements, and that additional sensors spatially average measurement noise to improve reconstruction accuracy. This research helps overcome some of the challenges of measuring full-field dynamics in flying insects and provides a framework for strain-based sensing in insect-inspired flapping robots.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3