Elucidation of regulatory modes for five two-component systems in Escherichia coli reveals novel relationships

Author:

Choudhary Kumari SonalORCID,Kleinmanns Julia A.,Decker Katherine,Sastry Anand V,Gao Ye,Szubin Richard,Seif Yara,Palsson Bernhard O.

Abstract

AbstractEscherichia coli uses two-component systems (TCSs) to respond to environmental signals. TCSs affect gene expression and are parts of E. coli’s global transcriptional regulatory network (TRN). Here, we identified the regulons of five TCSs in E. coli MG1655: BaeSR and CpxAR, which were stimulated by ethanol stress; KdpDE and PhoRB, induced by limiting potassium and phosphate, respectively; and ZraSR, stimulated by zinc. We analyzed RNA-seq data using independent component analysis (ICA). ChIP-exo data was used to validate condition-specific target gene binding sites. Based on this data we (1) identify the target genes for each TCS; (2) show how the target genes are transcribed in response to stimulus; and (3) reveal novel relationships between TCSs, which indicate non-cognate inducers for various response regulators, such as BaeR to iron starvation, CpxR to phosphate limitation, and PhoB and ZraR to cell envelope stress. Our understanding of the TRN in E. coli is thus notably expanded.ImportanceE. coli is a common commensal microbe found in human gut microenvironment; however, some strains cause diseases like diarrhea, urinary tract infections and meningitis. E. coli’s two-component system (TCS) modulates target gene expression, specially related to virulence, pathogenesis and anti-microbial peptides, in response to environmental stimuli. Thus, it is of utmost importance to understand the transcriptional regulation of the TCSs to infer its environmental adaptation and disease pathogenicity. Utilizing a combinatorial approach integrating RNAseq, independent component analysis, ChIP-exo and data mining, we show that TCSs have five different modes of transcriptional regulation. Our data further highlights non-cognate inducers of TCSs emphasizing cross-regulatory nature of TCSs in E. coli and suggests that TCSs may have a role beyond their cognate functionalities. In summary, these results when further incorporated with genome scale metabolic models can lead to understanding of metabolic capabilities of bacteria and correctly predict complex phenotype under diverse conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3