Author:
Shelke Ankita,Inamdar Madhura,Shah Vruddhi,Tiwari Amanshu,Hussain Aafiya,Chafekar Talha,Mehendale Ninad
Abstract
AbstractIn today’s world, we find ourselves struggling to fight one of the worst pandemics in the history of humanity known as COVID-2019 caused by a coronavirus. If we detect the virus at an early stage (before it enters the lower respiratory tract), the patient can be treated quickly. Once the virus reaches the lungs, we observe ground-glass opacity in the chest X-ray due to fibrosis in the lungs. Due to the significant differences between X-ray images of an infected and non-infected person, artificial intelligence techniques can be used to identify the presence and severity of the infection. We propose a classification model that can analyze the chest X-rays and help in the accurate diagnosis of COVID-19. Our methodology classifies the chest X-rays into 4 classes viz. normal, pneumonia, tuberculosis (TB), and COVID-19. Further, the X-rays indicating COVID-19 are classified on severity-basis into mild, medium, and severe. The deep learning model used for the classification of pneumonia, TB, and normal is VGG16 with an accuracy of 95.9 %. For the segregation of normal pneumonia and COVID-19, the DenseNet-161 was used with an accuracy of 98.9 %. ResNet-18 worked best for severity classification achieving accuracy up to 76 %. Our approach allows mass screening of the people using X-rays as a primary validation for COVID-19.
Publisher
Cold Spring Harbor Laboratory
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献