Somatotopic Arrangement of Eight Distinct Skin Areas in the Human Primary Somatosensory Cortex Derived from Functional Magnetic Resonance Imaging

Author:

Willoughby W. R.ORCID,Thoenes Kristina,Bolding MarkORCID

Abstract

AbstractBlood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to investigate cortical activity associated with peripheral tactile stimuli in a small cohort of healthy humans. MR-safe automated pneumatic stimulators modeled after the Wartenberg pinwheel were used to generate tactile stimuli at regular intervals on eight disparate areas of skin. The phase-encoded BOLD responses of voxels in the cerebral cortex were characterized by the maximal normalized cross-correlation coefficients at time delays between an idealized response and the measure time course. Overall at the group level, the somatotopic organization of the somatosensory cortex (SI) follows the accepted homunculus model, but a noticeable amount of variation was observed between individual study participants. The surface areas of cortical regions in SI activated by tactile stimulation of different body parts were calculated, giving an estimate of cortical magnification factors. Data collected with the participant actively attending the stimuli were compared to data collected before the attention task. No significant attention-related changes were observed in the somatotopic maps or in time courses of voxels well-correlated to stimuli.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3