Abstract
ABSTRACTMeasurement of cortical voluntary activation (VA) with transcranial magnetic stimulation (TMS) is limited by technical challenges. One challenge is the difficulty in preferential stimulation of cortical neurons projecting to the target muscle and minimal stimulation of cortical neurons projecting to antagonists. Thus, the motor evoked potential (MEP) response to TMS in the target muscle compared to its primary antagonist may be an important parameter in the assessment of cortical VA. Modulating isometric elbow angle alters the magnitude of MEPs at rest. The purpose of this study was to evaluate the effect of isometric elbow flexion-extension angle on: 1) the ratio of biceps MEP relative to the triceps MEP amplitude across a range of voluntary efforts, and 2) cortical VA. Ten non-impaired participants completed three sessions wherein VA was determined using TMS at 45°, 90° and 120° of isometric elbow flexion, and peripheral electrical stimulation at 90° of elbow flexion. The biceps/triceps MEP ratio was greater in the more flexed elbow angle (120° flexion) compared to 90° during contractions of 50% and 75% of maximum voluntary contraction. Cortical VA assessed in the more extended elbow angle (45° flexion) was lower relative to 90° elbow flexion; this effect was dependent on the biceps/triceps MEP ratio. Cortical VA was sensitive to small changes in the linearity of the voluntary torque and superimposed twitch relationship, regardless of the elbow angle. Peripheral and cortical VA measures at 90° of elbow flexion were repeatable across three days. In conclusion, although the biceps/triceps MEP ratio was increased at a more flexed elbow angle relative to 90°, there was not a corresponding difference in cortical VA. Thus, increasing the MEP ratio via elbow angle did not affect estimation of cortical VA.
Publisher
Cold Spring Harbor Laboratory