In vitro endoderm emergence and self-organisation in the absence of extraembryonic tissues and embryonic architecture

Author:

Vianello StefanoORCID,Lutolf Matthias P.ORCID

Abstract

The endoderm is the cell lineage which gives rise in the embryo to the organs of the respiratory and gastrointestinal system. Uniquely, endodermal tissue does not just derive from descendants of the embryo proper (the epiblast) but instead arises from their gradual incorporation into an extraembryonic substrate (the visceral endoderm). Given the configuration of the early embryo, such a paradigm requires epiblast endodermal progenitors to negotiate embryonic compartments with very diverse epithelial character, a developmental contingency reflected by the fact that key early endodermal markers such as Foxa2 and Sox17 have been consistently found to be embedded within gene programmes involved in epithelialisation.To explore the underlying cell biology of embryonic endoderm precursors, and to explore the relationship between endoderm development, epithelial identity, and extraembryonic mixing, we leveraged Gastruloids, in vitro models of early development. These self-organising three-dimensional aggregates of mouse embryonic stem cells do not possess an extraembryonic component, nor do they appear to display typical tissue architecture. Yet, they generate cells expressing endodermal markers. By tracking these cells throughout in vitro development, we highlight a persistent and uninterrupted pairing between epithelial and endodermal identity, with FoxA2+/Sox17+ endoderm progenitors never transitioning through mesenchymal intermediates and never leaving the epithelial compartment in which they arise. We also document the dramatic morphogenesis of these progenitors into a macroscopic epithelial primordium extending along the entire anterior-posterior axis of the Gastruloid. Finally, we find that this primordium correctly patterns into broad domains of gene expression, and matures cells with anterior foregut, midgut, and hindgut identities within 7 days of culture. We thus postulate that Gastruloids may serve as a potential source of endodermal types difficult to obtain through classical 2D differentiation protocols.

Publisher

Cold Spring Harbor Laboratory

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3