Organization and control of the ascorbate biosynthesis pathway in plants

Author:

Fenech MarioORCID,Amorim-Silva VítorORCID,del Valle Alicia EstebanORCID,Arnaud DominiqueORCID,Castillo Araceli G.ORCID,Smirnoff NicholasORCID,Botella Miguel A.ORCID

Abstract

ABSTRACTThe enzymatic steps involved in l-ascorbate biosynthesis in photosynthetic organisms (the Smirnoff-Wheeler, SW pathway) has been well established and here we comprehensively analyze the subcellular localization, potential physical interactions of SW pathway enzymes and assess their role in control of ascorbate synthesis. Transient expression of GFP-fusions in Nicotiana benthamiana and Arabidopsis (Arabidopsis thaliana) mutants complemented with genomic constructs showed that while GME is cytosolic, VTC1, VTC2, VTC4, and l-GalDH have cytosolic and nuclear localization. While transgenic lines GME-GFP, VTC4-GFP and l-GalDH-GFP driven by their endogenous promoters accumulated the fusion proteins, the functional VTC2-GFP protein is detected at low level using immunoblot in a complemented vtc2 null mutant. This low amount of VTC2 protein and the extensive analyses using multiple combinations of SW enzymes in N. benthamiana supported the role of VTC2 as the main control point of the pathway on ascorbate biosynthesis. Interaction analysis of SW enzymes using yeast two hybrid did not detect the formation of heterodimers, although VTC1, GME and VTC4 formed homodimers. Further coimmunoprecipitation (CoIP) analysis indicted that consecutive SW enzymes, as well as the first and last enzymes (VTC1 and l-GalDH), associate thereby adding a new layer of complexity to ascorbate biosynthesis. Finally, metabolic control analysis incorporating known kinetic characteristics, showed that previously reported feedback repression at the VTC2 step confers a high flux control coefficient and rationalizes why manipulation of other enzymes has little effect on ascorbate concentration.One sentence summaryMetabolic engineering, genetic analysis and functional mutant complementation identify GDP-l-galactose phosphorylase as the main control point in ascorbate biosynthesis in green tissues.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3