Fungal LysM effectors that comprise two LysM domains bind chitin through intermolecular dimerization

Author:

Tian Hui,Fiorin Gabriel L.,Kombrink Anja,Mesters Jeroen R.,Thomma Bart P.H.J.ORCID

Abstract

SUMMARYChitin is a polymer of β-(1,4)-linked N-acetyl-D-glucosamine (GlcNAc) and a major structural component of fungal cell walls that acts as a microbe-associated molecular pattern (MAMP) that can be recognized by plant cell surface-localized pattern recognition receptors (PRRs) to activate a wide range of immune responses. In order to deregulate chitin-induced plant immunity and successfully establish their infection, many fungal pathogens secrete effector proteins with LysM domains. We previously determined that two of the three LysM domains of the LysM effector Ecp6 from the tomato leaf mould fungus Cladosporium fulvum cooperate to form a chitin-binding groove that binds chitin with ultra-high affinity, allowing to outcompete host PRRs for chitin binding. In this study, we describe functional and structural analyses aimed to investigate whether LysM effectors that contain two LysM domains bind chitin through intramolecular or intermolecular LysM dimerization. To this end, we focus on MoSlp1 from the rice blast fungus Magnaporthe oryzae, Vd2LysM from the broad host range vascular wilt fungus Verticillium dahliae, and ChElp1 and ChElp2 from the Brassicaceae anthracnose fungus Colletotrichum higginsianum. We show that these LysM effectors bind chitin through intermolecular LysM dimerization, allowing the formation of polymeric complexes that may precipitate in order to eliminate the presence of chitin oligomers at infection sites to suppress activation of chitin-induced plant immunity. In this manner, many fungal pathogens are able to subvert chitin-triggered immunity in their plant hosts.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3