Abstract
SummaryTranscription factors (TFs) bind regulatory DNA to control gene expression, and mutations to either TFs or DNA can alter binding affinities to rewire regulatory networks and drive phenotypic variation. While studies have profiled energetic effects of DNA mutations extensively, we lack similar information for TF variants. Here, we present STAMMP (Simultaneous Transcription Factor Affinity Measurements via Microfluidic Protein Arrays), a high-throughput microfluidic platform enabling quantitative characterization of hundreds of TF variants simultaneously. Measured affinities for ∼210 mutants of a model yeast TF (Pho4) interacting with 9 oligonucleotides (>1,800 Kds) reveal that many combinations of mutations to poorly conserved TF residues and nucleotides flanking the core binding site alter but preserve physiological binding, providing a mechanism for mutations in cis and trans to rewire networks without insurmountable evolutionary penalties. Moreover, biochemical double-mutant cycles across the TF-DNA interface reveal molecular mechanisms driving recognition, linking sequence to function.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献