Excess histone H3 is a Chk1 inhibitor that controls embryonic cell cycle progression

Author:

Shindo YukiORCID,Amodeo Amanda A.ORCID

Abstract

AbstractThe early embryos of many species undergo a switch from rapid, reductive cleavage divisions to slower, cell fate-specific division patterns at the Mid-Blastula Transition (MBT). The maternally loaded histone pool is used to measure the increasing ratio of nuclei to cytoplasm (N/C ratio) to control MBT onset, but the molecular mechanism of how histones regulate the cell cycle has remained elusive. Here, we show that excess histone H3 inhibits the DNA damage checkpoint kinase Chk1 to promote cell cycle progression in the Drosophila embryo. We find that excess H3-tail that cannot be incorporated into chromatin is sufficient to shorten the embryonic cell cycle and reduce the activity of Chk1 in vitro and in vivo. Removal of the Chk1 phosphosite in H3 abolishes its ability to regulate the cell cycle. Mathematical modeling quantitatively supports a mechanism where changes in H3 nuclear concentrations over the final cell cycles leading up to the MBT regulate Chk1-dependent cell cycle slowing. We provide a novel mechanism for Chk1 regulation by H3, which is crucial for proper cell cycle remodeling during early embryogenesis.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. Checkpoints: Controls That Ensure the Order of Cell Cycle Events

2. DNA damage kinase signaling: checkpoint and repair at 30 years;EMBO J.,2019

3. The Drosophila maternal-effect mutation grapes causes a metaphase arrest at nuclear cycle 13;Development,1994

4. The Drosophila grapes gene is related to checkpoint gene chk1/rad27 and is required for late syncytial division fidelity

5. DNA-replication checkpoint control at the Drosophila midblastula transition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3