A predictive model of gene expression reveals the role of regulatory motifs in the mating response of yeast

Author:

Pomeroy Amy E.ORCID,Pena Matthew I.,Houser John R.,Dixit Gauri,Dohlman Henrik G.,Elston Timothy C.,Errede Beverly

Abstract

ABSTRACTCells use signaling pathways to receive and process information about their environment. These systems are nonlinear, relying on feedback and feedforward regulation to respond appropriately to changing environmental conditions. Mathematical models developed to describe signaling pathways often fail to show predictive power, because the models are not trained on data that probe the diverse time scales on which feedforward and feedback regulation operate. We addressed this limitation using microfluidics to expose cells to a broad range of dynamic environmental conditions. In particular, we focus on the well-characterized mating response pathway of S. cerevisiae (yeast). This pathway is activated by mating pheromone and initiates the transcriptional changes required for mating. Although much is known about the molecular components of the mating response pathway, less is known about how these components function as a dynamical system. Our experimental data revealed that pheromone-induced transcription persists following removal of pheromone and that long-term adaptation of the transcriptional response occurs when pheromone exposure is sustained. We developed a model of the regulatory network that captured both persistence and long-term adaptation of the mating response. We fit this model to experimental data using an evolutionary algorithm and used the parameterized model to predict scenarios for which it was not trained, including different temporal stimulus profiles and genetic perturbations to pathway components. Our model allowed us to establish the role of four regulatory motifs in coordinating pathway response to persistent and dynamic stimulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3