RecombinantHelicobacter pyloriCagA protein induces endoplasmic reticulum stress and autophagy in human cells

Author:

Nami BabakORCID,Azzawri Ali,Ucar Vasfiye B,Acar Hasan

Abstract

AbstractHelicobacter pylori(Hp) CagA protein has a key role in the development of gastric cancer by the intruding in many intracellular processes of host human cell. Endoplasmic reticulum (ER) stress is an essential process for cellular homeostasis that modulates survival and death and is linked to several complex diseases including cancer. CagA protein is found in the serum ofHp-positive individuals and also in the supernatant ofHpculture. Limited studies report that recombinant CagA can alter gene expression and signaling pathways and induce the death of human cells. In this study, we investigated the effect of exogenous recombinant CagA protein treatment on ER stress and autophagy of human cell. AGS, MKN45, and HEK293 cells were treated with 1 µg/ml of recombinant CagA protein and then ER stress was studied by quantitative-PCR of spliced XBP-1 mRNA, immunofluorescence staining of ATF6 protein nuclear localization and real-time quantitative-PCR and/or western blot expression of GRP78, GRP94, ATF4 and CHOP genes. Autophagy was studied by western blot assessment of the conversion of LC3-I to LC3-II and LC3 aggregation. Cell proliferation and death were investigated by MTT assay and trypan blue staining respectively. As result, treatment with recombinant CagA enhanced XBP-1mRNA splicing, nuclear localization of ATF6, and the expression of ER stress signaling target genes in the cells. Recombinant CagA also induced LC3 protein conversion and aggregation in the cells. Reduced cell proliferation and increased cell death were determined in the cells treated with recombinant CagA. These results show that exogenous recombinant CagA protein causes cell death by inducing ER stress and autophagy in human cells. We conclude that CagA protein exogenously localizes in/on human cells and induces ER stress via disturbing protein machinery leading the human cell to death, however, the mechanism of CagA-host cell interaction is to be investigated.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3