Conserved tryptophan mutation disrupts structure and function of immunoglobulin domain revealing unusual tyrosine fluorescence

Author:

Vattepu Ravi,Klausmeyer Rachel A.,Ayella Allan,Yadav Rahul,Dille Joseph T.,Saiz Stan V.,Beck Moriah R.ORCID

Abstract

ABSTRACTImmunoglobulin (Ig) domains are the most prevalent protein domain structure and share a highly conserved folding pattern; however, this structural family of proteins is also the most diverse in terms of biological roles and tissue expression. Ig domains vary significantly in amino acid sequence but share a highly conserved tryptophan in the hydrophobic core of this beta-stranded protein. Palladin is an actin binding and bundling protein that has five Ig domains and plays an important role in normal cell adhesion and motility. Mutation of the core tryptophan in one Ig domain of palladin has been identified in a pancreatic cancer cell line, suggesting a crucial role for this sole tryptophan in palladin Ig domain structure, stability, and function. We found that actin binding and bundling was not completely abolished with removal of this tryptophan despite a partially unfolded structure and significantly reduced stability of the mutant Ig domain as shown by circular dichroism investigations. In addition, this mutant palladin domain displays a tryptophan-like fluorescence attributed to an anomalous tyrosine emission at 345 nm. Our results indicate that this emission originates from a tyrosinate that may be formed in the excited ground state by proton transfer to a nearby glutamyl residue. Furthermore, this study emphasizes the importance of tryptophan in protein structural stability and illustrates how tyrosinate emission contributions may be overlooked during the interpretation of the fluorescence properties of proteins.SHORT ABSTRACTThis study explores the functional and structural consequences of a point mutation in palladin, an Ig domain protein first identified in a pancreatic tumor cancer cell line. While exploring the consequences of mutating this conserved tryptophan in the hydrophobic core of the most prevalent domain structure found in proteins, an anomalous tyrosine fluorescence phenomenon was exposed.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3