Deep Learning and Holt-Trend Algorithms for predicting COVID-19 pandemic

Author:

Aldhyani Theyazn H.H,Alrasheed Melfi,Alqarni Ahmed Abdullah,Alzahrani Mohammed Y.,Alahmadi Ahmed H.

Abstract

AbstractAccording to WHO, more than one million individuals are infected with COVID-19, and around 20000 people have died because of this infectious disease around the world. In addition, COVID-19 epidemic poses serious public health threat to the world where people with little or no pre-existing human immunity can be more vulnerable to the effects of the effects of the coronavirus. Thus, developing surveillance systems for predicting COVID-19 pandemic in an early stage saves millions of lives. In this study, the deep learning algorithm and Holt-trend model is proposed to predict coronavirus. The Long-Short Term Memory (LSTM) algorithm and Holt-trend were applied to predict confirmed numbers and death cases. The real time data have been collected from the World Health Organization (WHO). In the proposed research, we have considered three countries to test the proposed model namely Saudi Arabia, Spain and Italy. The results suggest that the LSTM models showed better performance in predicting the cases of coronavirus patients. Standard measure performance MSE, RMSE, Mean error and correlation are employed to estimate the results of the proposed models. The empirical results of the LSTM by using correlation metric are 99.94%, 99.94% and 99.91 to predict number of confirmed cases on COVID-19 in three countries. Regarding the prediction results of LSTM model to predict the number of death on COVID-19 are 99.86%, 98.876% and 99.16 with respect to the Saudi Arabia, Italy and Spain respectively. Similarly the experimented results of Holt-Trend to predict the number of confirmed cases on COVID-19 by using correlation metrics are 99.06%, 99.96% and 99.94, whereas the results of Holt-Trend to predict the number of death cases are 99.80%, 99.96 and 99.94 with respect to the Saudi Arabia, Italy and Spain respectively. The empirical results indicate the efficient performance of the presented model in predicting the number of confirmed and death cases of COVID-19 in these countries. Such findings provide better insights about the future of COVID-19 in general. The results were obtained by applying the time series models which needs to be considered for the sake of saving the lives of many people.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. https://www.who.int/health-topics/coronavirus

2. https://www.oecd.org/economic-outlook/

3. Internet monitoring of suicide risk in the population;J. A_ect. Disord.,2010

4. The Effect of Suicide-Related Internet Use on Users’ Mental Health

5. The Impact of Suicidality-Related Internet Use: A Prospective Large Cohort Study with Young and Middle-Aged Internet Users

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The prediction analysis of Covid-19 using enhanced deep learning network and improvised optimization algorithms;PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ENGINEERING RESEARCH AND APPLICATION 2022 (ICERA 2022);2023

2. The Most Infamous Coronavirus Forecast;Credible Asset Allocation, Optimal Transport Methods, and Related Topics;2022

3. A Bidirectional Long Short-Term Memory Model Algorithm for Predicting COVID-19 in Gulf Countries;Life;2021-10-21

4. Wearable Wireless Body Area Networks for Medical Applications;Computational and Mathematical Methods in Medicine;2021-04-24

5. ALeRT-COVID: Attentive Lockdown-awaRe Transfer Learning for Predicting COVID-19 Pandemics in Different Countries;Journal of Healthcare Informatics Research;2021-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3