Abstract
ABSTRACTAnalysis of the dynamics of adenosine triphosphate (ATP) is vital to quantitatively define the actual roles of ATP in biological activities. Here, we applied a genetically encoded Förster resonance energy transfer biosensor “GO-ATeam” and created a transgenic mouse model that allows systemic ATP levels to be quantitatively, sensitively, noninvasively, and spatiotemporally measured under physiological and pathological conditions. We used this model to readily conduct intravital imaging of ATP dynamics under three different conditions: during exercise, in all organs and cells; during myocardial infarction progression; and in response to the application of cardiotoxic drugs. These findings provide compelling evidence that the GO-ATeam mouse model is a powerful tool to investigate the multifarious functions of cellular ATP in vivo with unprecedented spatiotemporal resolution in real-time. This will inform predictions of molecular and morphological responses to perturbations of ATP levels, as well as the elucidation of physiological mechanisms that control ATP homeostasis.One Sentence SummaryIntravital real-time imaging of ATP dynamics in multiple organs using GO-ATeam mice, can be used to quantitatively, sensitively, noninvasively, and spatiotemporally measure systemic ATP levels and provide a platform for preclinical pharmacological studies.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献