Author:
Levine Jared N.,Schwartz Gregory W.
Abstract
AbstractIn the mouse, retinal output is computed by over 40 distinct types of retinal ganglion cells (RGCs) (Baden et al., 2016). Determining which of these many RGC types project to a retinorecipient region is a key step in elucidating the role that region plays in visually-mediated behaviors. Combining retrograde viral tracing and single-cell electrophysiology, we identify the RGC types which project to the olivary pretectal nucleus (OPN), a major visual structure. We find that retinal input to the OPN consists of a variety of intrinsically-photosensitive and conventional RGC types, the latter a diverse set of mostly ON RGCs. Surprisingly, while the OPN is most associated with the pupillary light reflex (PLR) pathway, requiring information about absolute luminance, we show that the majority of the retinal input to the OPN is from single cell type which transmits information unrelated to luminance. This ON-transient RGC accounts for two-thirds of the input to the OPN, and responds to small objects across a wide range of speeds. This finding suggests a role for the OPN in visually-mediated behaviors beyond the PLR.Significance statementThe olivary pretectal nucleus is a midbrain structure which receives direct input from retinal ganglion cells (RGC), and modulates pupil diameter in response to changing absolute light level. In the present study, we combine viral tracing and electrophysiology to identify the RGC types which project to the OPN. Surprisingly, the majority of its input comes from a single type which does not encode absolute luminance, but instead responds to small objects across a wide range of speeds. These findings are consistent with a role for the OPN apart from pupil control and suggest future experiments to elucidate its full role in visually-mediated behavior.
Publisher
Cold Spring Harbor Laboratory
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献