Abstract
AbstractObjectiveThe development of an in vitro platform for modeling human skin injury and the re-epithelization process.ApproachA fibrin provisional matrix (FPM) was installed into a wound facsimile of a bioprinted human skin equivalent (HSE). A mixture of plasma-derived fibrinogen-containing factor XIII, fibronectin, thrombin, and macrophages (an FPM “bioink”) was extruded into the wound site. The surrounding in vitro tissue culture became a source of keratinocytes to achieve wound closure by a re-epithelialization process signaled by the FPM.ResultsAn in vitro analog of wound closure and re-epithelialization by keratinocytes occurred over the FPM after a normal migration initiation at 3 days.InnovationA physiologic mixture of macrophage/fibrinogen/fibronectin that supports macrophage differentiation was applied to a mechanically wounded, bioprinted dermal tissue. We developed a transitional culture medium to mimic the changing microenvironment during the initial phases of wound healing. As a reference, we temporally compared our in vitro model with a murine skin wound healing.ConclusionThis co-culture model was shown to temporally synchronize a re-epithelization process for initiation of keratinocyte migration from a surrounding tissue and the migration process over the top of an FPM. A future study of the analogous subepithelial healing pathway is envisioned using the same in vitro bioprinted tissue study platform for co-culture of keratinocytes, melanocytes, fibroblasts, endothelial cells, and macrophages using more specialized FPMs.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献