Deep learning classification of lipid droplets in quantitative phase images

Author:

Sheneman L.ORCID,Stephanopoulos G.,Vasdekis A. E.ORCID

Abstract

AbstractWe report the application of supervised machine learning to the automated classification of lipid droplets in label-free, quantitative-phase images. By comparing various machine learning methods commonly used in biomedical imaging and remote sensing, we found convolutional neural networks to outperform others, both quantitatively and qualitatively. We describe our imaging approach, all implemented machine learning methods, and their performance with respect to computational efficiency, required training resources, and relative method performance measured across multiple metrics. Overall, our results indicate that quantitative-phase imaging coupled to machine learning enables accurate lipid droplet classification in single living cells. As such, the present paradigm presents an excellent alternative of the more common fluorescent and Raman imaging modalities by enabling label-free, ultra-low phototoxicity, and deeper insight into the thermodynamics of metabolism of single cells.Author SummaryRecently, quantitative-phase imaging (QPI) has demonstrated the ability to elucidate novel parameters of cellular physiology and metabolism without the need for fluorescent staining. Here, we apply label-free, low photo-toxicity QPI to yeast cells in order to identify lipid droplets (LDs), an important organelle with key implications in human health and biofuel development. Because QPI yields low specificity, we explore the use of modern machine learning methods to rapidly identify intracellular LDs with high discriminatory power and accuracy. In recent years, machine learning has demonstrated exceptional abilities to recognize and segment objects in biomedical imaging, remote sensing, and other areas. Trained machine learning classifiers can be combined with QPI within high-throughput analysis pipelines, allowing for efficient and accurate identification and quantification of cellular components. Non-invasive, accurate and high-throughput classification of these organelles will accelerate research and improve our understanding of cellular functions with beneficial applications in biofuels, biomedicine, and more.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3