Suppression of pyramidal neuron G protein-gated inwardly rectifying K+ channel signaling impairs prelimbic cortical function and underlies stress-induced deficits in cognitive flexibility

Author:

Anderson Eden M,Loke Steven,Wrucke Benjamin,Engelhardt Annabel,Hess Evan,Wickman Kevin,Hearing Matthew C

Abstract

AbstractBackgroundImbalance in prefrontal cortical (PFC) pyramidal neuron excitation:inhibition is thought to underlie symptomologies shared across stress-related disorders and neuropsychiatric disease, including dysregulation of emotion and cognitive function. G protein-gated inwardly rectifying K+(GIRK/Kir3) channels mediate excitability of medial PFC pyramidal neurons, however the functional role of these channels in mPFC-dependent regulation of affect, cognition, and cortical dynamics is unknown.MethodsIn mice harboring a ‘floxed’ version of the kcnj3 (Girk1) gene, we used a viral-cre approach to disrupt GIRK1-containing channel expression in pyramidal neurons within the prelimbic (PL) or infralimbic (IL) cortices. Additional studies used a novel model of chronic unpredictable stress (CUS) to determine the impact on PL GIRK-dependent signaling and cognitive function.ResultsIn males, loss of pyramidal GIRK-dependent signaling in the PL, but not IL, differentially impacted measures of affect and motivation, and impaired working memory and cognitive flexibility. CUS produced similar deficits in affect and cognition that paralleled a reduction in PL pyramidal GIRK-dependent signaling akin to viral approaches. Viral- and stress-induced behavioral deficits were rescued by systemic injection of a novel, GIRK1-selective agonist, ML-297. Unexpectedly, neither ablation of PL GIRK-dependent signaling or exposure to the CUS regimen impacted affect or cognition in female mice.ConclusionsGIRK-dependent signaling in male mice, but not females, is critical for maintaining optimal PL function and behavioral control. Disruption of this inhibition may underlie stress-related dysfunction of the PL and represent a therapeutic target for treating stress-induced deficits in affect regulation and impaired cognition that reduce quality of life.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3