Abstract
AbstractWe report the largest and most ancestrally diverse genetic study of type 1 diabetes (T1D) to date (61,427 participants), yielding 152 regions associated to false discovery rate < 0.01, including 36 regions associated to genome-wide significance for the first time. Credible sets of disease-associated variants are specifically enriched in immune cell accessible chromatin, particularly in CD4+ effector T cells. Colocalization with chromatin accessibility quantitative trait loci (QTL) in CD4+ T cells identified five regions where differences in T1D risk and chromatin accessibility are potentially driven by the same causal variant. Allele-specific chromatin accessibility further refined the set of putative causal variants with functional relevance in CD4+ T cells and integration of whole blood expression QTLs identified candidate T1D genes, providing high-yield targets for mechanistic follow-up. We highlight rs72938038 in BACH2 as a candidate causal T1D variant, where the T1D risk allele leads to decreased enhancer accessibility and BACH2 expression in T cells. Finally, we prioritise potential drug targets by integrating genetic evidence, functional genomic maps, and immune protein-protein interactions, identifying 12 genes implicated in T1D that have been targeted in clinical trials for autoimmune diseases. These findings provide an expanded genomic landscape for T1D, including proposed genetic regulatory mechanisms of T1D-associated variants and genetic support for therapeutic targets for immune intervention.
Publisher
Cold Spring Harbor Laboratory
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献